Shang Song
Shang Song and her team at the University of Arizona deploy novel engineering approaches and biomaterials that can manipulate cellular microenvironment. This facilitates the development of new regenerative medicine and organ-on-chip systems. Her past projects include implantable bioartificial pancreas to treat type 1 diabetes, electrically-stimulated stem cell therapy for stroke and peripheral nerve injury recovery, bone tissue engineering, and drug delivery via nano-vehicles.
Dr. Song completed her PhD from University of California Berkeley (UC Berkeley) and University of California San Francisco (UCSF), advised by Dr. Shuvo Roy, Dr. Qizhi Tang and Dr. Tejal Desai. Her graduate work focused on the development of bioartificial organs and study of interaction between stem cells and biomaterials with engineering and molecular techniques. She received her postdoctoral training on neural repair and neuromuscular recovery techniques through electrical stimulation on stem cell functions under Dr. Paul George and Dr. Thomas Rando at Stanford University.
Dr. Song obtained her BS with honors in biomedical engineering from Brown University with support of the Gates Millennium Scholarship. She grew up with her Chinese immigrant parents in the public school system of Guam (U.S.) next to the American military bases. She’s passionate about helping first-generation college students and students from nontraditional backgrounds.
Degrees
- PhD Bioengineering
- UC Berkeley and UCSF, California
- BS Biomedical Engineering (Honors)
- Brown University, Providence, Rhode Island
Work Experience
- Stanford University, Palo Alto, California (2017 - 2021)
- Sandia National Laboratories (2015 - 2015)
Interests
Teaching
Focus on student-centered teaching and hands-on learning experience with lecture and laboratory based classes.
Research
Using engineered biomaterials and cell therapy to develop Organs-on-Chips/microphysiological systems and regenerative approaches to advance human health.
Courses
Honors Independent Study
BME 299H (Spring 2024)
Stem Cells
BME 487 (Fall 2025)
BME 587 (Fall 2025)
BME 487 (Fall 2024)
BME 587 (Fall 2024)
BME 487 (Fall 2023)
BME 587 (Fall 2023)
BME 587 (Fall 2022)
Bioprinting of Funct Tissues
BME 488 (Fall 2025)
BME 588 (Fall 2025)
Directed Research
BME 492 (Spring 2025)
ABBS 792 (Fall 2024)
BME 492 (Fall 2024)
BME 492 (Fall 2023)
BME 492 (Fall 2022)
Neurodegenerative Diseases
PCOL 512 (Spring 2025)
Rsrch Meth Biomed Engr
BME 592 (Fall 2025)
BME 592 (Fall 2024)
BME 592 (Fall 2023)
BME 592 (Spring 2023)
BME 592 (Fall 2022)
Special Topics in BME
BME 596 (Fall 2024)
Biomedical Engr Seminar
BME 696A (Fall 2024)
BME 696A (Fall 2023)
BME 696A (Fall 2022)
Bme Student Forum
BME 696C (Spring 2024)
BME 696C (Spring 2023)
Methods In Neuroscience
NRSC 700 (Fall 2024)
Master's Report
BME 909 (Spring 2025)
BME 909 (Spring 2024)
BME 909 (Spring 2023)
Thesis
BME 910 (Fall 2025)
BME 910 (Spring 2024)
BME 910 (Spring 2023)
BME 910 (Fall 2022)
Dissertation
BME 920 (Fall 2025)
BME 920 (Spring 2025)
BME 920 (Fall 2024)
BME 920 (Spring 2024)
Selected Publications
Journals/Publications
- Reynolds, M., Stoy, L. M., Sun, J., Opoku Amponsah, P. E., Li, L., Soto, M., & Song, S. (2024). Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels. Gels (Basel, Switzerland), 10(2).
- Song, S., McConnell, K. W., Shan, D., Chen, C., Oh, B., Sun, J., Poon, A. S., & George, P. M. (2024). Conductive gradient hydrogels allow spatial control of adult stem cell fate. Journal of materials chemistry. B, 12(7), 1854-1863.
- Sun, J., & Song, S. (2024). Advances in modeling permeability and selectivity of the blood-brain barrier using microfluidics. Microfluidics and Nanofluidics, 28(7), 44.
- Omer, S. A., McKnight, K. H., Young, L. I., & Song, S. (2023). Stimulation strategies for electrical and magnetic modulation of cells and tissues. Cell regeneration (London, England), 12(1), 21.
- Santhanam, S., Feig, V. R., McConnell, K. W., Song, S., Gardner, E. E., Patel, J. J., Shan, D., Bao, Z., & George, P. M. (2023). Controlling the Stem Cell Environment Via Conducting Polymer Hydrogels to Enhance Therapeutic Potential. Advanced Materials Technologies, 8(10), 2201724.
- Oh, B., Santhanam, S., Azadian, M., Swaminathan, V., Lee, A. G., McConnell, K. W., Levinson, A., Song, S., Patel, J. J., Gardner, E. E., & George, P. M. (2022). Electrical modulation of transplanted stem cells improves functional recovery in a rodent model of stroke. Nature communications, 13(1), 1366.
- Song, S., McConnell, K. W., Amores, D., Levinson, A., Vogel, H., Quarta, M., Rando, T. A., & George, P. M. (2021). Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials, 275, 120982.
- Suhar, R., Marquardt, L., Song, S., Buabbas, H., Doulames, V., Johansson, P., Klett, K., Dewi, R., Enejder, A., Plant, G., George, P., & Heilshorn, S. (2021). Elastin-like Proteins to Support Peripheral Nerve Regeneration in Guidance Conduits. ACS Biomaterials Science and Engineering, 7(9). doi:10.1021/acsbiomaterials.0c01053
- Liu, Y., Li, J., Song, S., Kang, J., Tsao, Y., Chen, S., Mottini, V., McConnell, K., Xu, W., Zheng, Y. Q., Tok, J. B., George, P. M., & Bao, Z. (2020). Morphing electronics enable neuromodulation in growing tissue. Nature biotechnology, 38(9), 1031-1036.
- Liu, Y., Li, J., Song, S., Kang, J., Tsao, Y., Chen, S., Mottini, V., McConnell, K., Xu, W., Zheng, Y., Tok, J., George, P., & Bao, Z. (2020). Author Correction: Morphing electronics enable neuromodulation in growing tissue Nature Biotechnology, (2020), 38, 9, (1031-1036), 10.1038/s41587-020-0495-2). Nature Biotechnology, 38(9). doi:10.1038/s41587-020-0533-0
- Suhar, R. A., Marquardt, L. M., Song, S., Buabbas, H., Doulames, V. M., Johansson, P. K., Klett, K. C., Dewi, R. E., Enejder, A. M., Plant, G. W., George, P. M., & Heilshorn, S. C. (2020). Elastin-like Proteins to Support Peripheral Nerve Regeneration in Guidance Conduits. ACS biomaterials science & engineering, 7(9), 4209-4220.
- Song, S., Amores, D., Chen, C., McConnell, K., Oh, B., Poon, A., & George, P. M. (2019). Controlling properties of human neural progenitor cells using 2D and 3D conductive polymer scaffolds. Scientific reports, 9(1), 19565.
- Oh, B., Levinson, A., Lam, V., Song, S., & George, P. (2018). Electrically Conductive Scaffold to Modulate and Deliver Stem Cells. Journal of visualized experiments: JoVE.
- Oh, B., Song, S., Lam, V., Levinson, A., & George, P. (2018). In vivo Electrical Stimulation of Neural Stem Cells via Conductive Polymer Scaffold Improves Endogenous Repair Mechanisms of Stroke Recovery (P4.028). Neurology. doi:10.1212/wnl.90.15_supplement.p4.028
- Oh, B., Song, S., Levinson, A., Lam, V., & George, P. (2018). Abstract 59: Combining Electrical Stimulation With Stem Cell Therapy Improves Endogenous Mechanisms of Stroke Recovery. Stroke. doi:10.1161/str.49.suppl_1.59
- Song, S., & George, P. M. (2017). Conductive polymer scaffolds to improve neural recovery. Neural regeneration research, 12(12), 1976-1978.
- Song, S., Blaha, C., Moses, W., Park, J., Wright, N., Groszek, J., Fissell, W., Vartanian, S., Posselt, A. M., & Roy, S. (2017). An intravascular bioartificial pancreas device (iBAP) with silicon nanopore membranes (SNM) for islet encapsulation under convective mass transport. Lab on a chip, 17(10), 1778-1792.
- Song, S., Yeung, R., Park, J., Posselt, A. M., Desai, T. A., Tang, Q., & Roy, S. (2017). Glucose-Stimulated Insulin Response of Silicon Nanopore-Immunoprotected Islets under Convective Transport. ACS biomaterials science & engineering, 3(6), 1051-1061.
- Song, S., & Roy, S. (2016). Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: Cells, biomaterials, and devices. Biotechnology and bioengineering, 113(7), 1381-402.
- Song, S., Faleo, G., Yeung, R., Kant, R., Posselt, A. M., Desai, T. A., Tang, Q., & Roy, S. (2016). Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport. Scientific reports, 6, 23679.
- Song, S., Kim, E. J., Bahney, C. S., Miclau, T., Marcucio, R., & Roy, S. (2015). The synergistic effect of micro-topography and biochemical culture environment to promote angiogenesis and osteogenic differentiation of human mesenchymal stem cells. Acta biomaterialia, 18, 100-11.
- Chen, Y., Song, S., Yan, Z., Fenniri, H., & Webster, T. J. (2011). Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone. International journal of nanomedicine, 6, 1035-44.
- Song, S., Chen, Y., Yan, Z., Fenniri, H., & Webster, T. J. (2011). Self-assembled rosette nanotubes for incorporating hydrophobic drugs in physiological environments. International journal of nanomedicine, 6, 101-7.
- Song, S., Yupeng, C., Fenniri, H., & Webster, T. J. (2010). A novel drug delivery device for orthopedic applications. IEEE. doi:10.1109/nebc.2010.5458247
Ward, C. J., Song, S., & Davis, E. W. (2010). Controlled release of tetracycline-HCl from halloysite-polymer composite films. Journal of nanoscience and nanotechnology, 10(10), 6641-9. - Chen, Y., Song, S., Fenniri, H., & Webster, T. J. (2009). Drug Deliverable, Self-assembled Rosette Nanotubes (RNTs) for Orthopedic Applications. MRS Proceedings. doi:10.1557/proc-1209-yy07-17
- Song, S., Chen, Y., & Webster, T. J. (2009). Studies of controlled release of drug from Helical Rosette Nanotubes (HRN). IEEE. doi:10.1109/nebc.2009.4967646
Proceedings Publications
- Oh, B., Song, S., Lam, V., Levinson, A., & George, P. (2018). In vivo Electrical Stimulation of Neural Stem Cells via Conductive Polymer Scaffold Improves Endogenous Repair Mechanisms of Stroke Recovery (P4.028). In Neurology.
- Song, S., Chen, Y., Fenniri, H., & Webster, T. (2010). A novel drug delivery device for orthopedic applications. In IEEE.
- Song, S., Chen, Y., & Webster, T. (2009). Studies of controlled release of drug from Helical Rosette Nanotubes (HRN). In IEEE.
Awards
- George H. Davis Fellowship
- The University of Arizona, Spring 2025
- 2024 ORAU Ralph E. Powe Junior Faculty Enhancement Award
- Oak Ridge Associated Universities (ORAU), Summer 2024
- Career Development Award
- American Heart Association, Spring 2024
- New Investigator Award
- Arizona Biomedical Research Centre, Spring 2024
- NIH Ruth L. Kirschstein Research Service Awards (NRSA) F32
- National Institute of Health (NIH), Spring 2019
- Dean's Postdoctoral Fellowship
- Stanford University, Fall 2018
- Forbes 30 Under 30
- Forbes Magazine, Winter 2016
- Foundation Capital Founder's Program Finalist
- Foundation Capital, Spring 2015
- NSF Graduate Research Fellowship (GRFP)
- National Science Foundation (NSF), Winter 2010
- Gates Millennium Scholar (GMS)
- Bill and Melinda Gates Foundation, Spring 2006